Activation by divalent cations of a Ca2+-activated K+ channel from skeletal muscle membrane

نویسندگان

  • A Oberhauser
  • O Alvarez
  • R Latorre
چکیده

Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the BK (SLO1) potassium channel by mallotoxin.

Pharmacologic approaches to activate K+ channels represent an emerging strategy to regulate membrane excitability. Here we report the identification and characterization of a lipid soluble toxin, mallotoxin (rottlerin), which potently activates the large conductance voltage and Ca2+-activated K+ channel (BK) expressed in a heterologous expression system and human vascular smooth muscle cells, s...

متن کامل

Ca2+ influx through stretch-activated cation channels activates maxi K+ channels in porcine endocardial endothelium.

The endocardial endothelium is an important modulator of myocardial function. The present study demonstrates the existence of a stretch-activated Ca(2+)-permeable cation channel and of a Ca(2+)-activated K+ channel in the endocardial endothelium of the porcine right atrium. The stretch-activated channel is permeable for K+, Na+, Ca2+, and Ba2+, with mean conductances of approximately 32 pS for ...

متن کامل

Functional properties of endogenous receptor- and store-operated calcium influx channels in HEK293 cells.

Activation of phospholipase C (PLC)-mediated signaling pathways in non-excitable cells causes the release of calcium (Ca2+) from inositol 1,4,5-trisphosphate (InsP3)-sensitive intracellular Ca2+ stores and activation of Ca2+ influx via plasma membrane Ca2+ channels. The properties and molecular identity of plasma membrane Ca2+ influx channels in non-excitable cells is a focus of intense investi...

متن کامل

Divalent cation block and competition between divalent and monovalent cations in the large-conductance K+ channel from Chara australis

The patch-clamp technique is used to investigate divalent ion block of the large-conductance K+ channel from Chara australis. Block by Ba2+, Ca2+, Mg2+, and Pt(NH3)4(2+) from the vacuolar and cytoplasmic sides is used to probe the structure of, and ion interactions within, the pore. Five divalent ion binding sites are detected. Vacuolar Ca2+ reduces channel conductance by binding to a site loca...

متن کامل

Modulation of Ca2+-gated cardiac muscle Ca2+-release channel (ryanodine receptor) by mono- and divalent ions.

The effects of mono- and divalent ions on Ca2+-gated cardiac muscle Ca2+-release channel (ryanodine receptor) activity were examined in [3H]ryanodine-binding measurements. Ca2+ bound with the highest apparent affinity to Ca2+activation sites in choline chloride medium, followed by KCl, CsCl, NaCl, and LiCl media. The apparent Ca2+ binding affinities of Ca2+ inactivation sites were lower in chol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 92  شماره 

صفحات  -

تاریخ انتشار 1988